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ABSTRACT
As machine learning methods gain popularity across di�erent �elds,
acquiring labeled training datasets has become the primary bo�le-
neck in the machine learning pipeline. Recently, generative models
have been used to create and label large amounts of training data,
albeit noisily. �e output of these generative models is then used to
train a discriminative model of choice, such as logistic regression
or a complex neural network. However, any errors in the genera-
tive model can propagate to the subsequent model being trained.
Unfortunately, these generative models are not easily interpretable
and are therefore di�cult to debug for users. To address this, we
present our vision for Flipper, a framework that presents users
with high-level information about why their training set is inaccu-
rate and informs their decisions as they improve their generative
model manually. We present potential tools within the Flipper
framework, inspired by observing biomedical experts working with
generative models, which allow users to analyze the errors in their
training data in a systematic fashion. Finally, we discuss a prototype
of Flipper and report results of a user study where users create a
training set for a classi�cation task and improve the discriminative
model’s accuracy by 2.4 points in less than an hour with feedback
from Flipper.
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1 INTRODUCTION
Machine learning has become a ubiquitous tool across a variety of
�elds. �is has partly been fueled by the success of methods based
on complex neural networks such as convolutional neural networks
(CNNs) [8] and long short-term memory networks (LSTMs) [5] that
have alleviated the need for manual feature engineering. �ese
methods in turn rely on the availability of large, labeled training
sets, such as ImageNet [2], CallHome corpus [12] and MNIST [10].
However, only a few groups have the computational and human
resources available to generate this magnitude of labeled data. For
most real-world experiments, obtaining hand-labeled training data
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is an expensive process that requires time as well as domain knowl-
edge.

To address this issue, recent approaches have utilized generative
models to create and label large amounts of data e�ciently. Gen-
erative adversarial networks (GANs) have been used to generate
data samples indistinguishable from real data, especially for images
[4]. Another approach uses a probabilistic graphical model that
utilizes a collection of noisy labels and a few clean labels to train
an end-to-end deep learning system for image classi�cation [17].
Data programming is another method that has been applied to
noisily label text data by modeling heuristics, which include weak
and distant supervision sources, as a generative process [13]. �e
imperfect training sets that the generative models output can then
be used to train a discriminative model of choice, allowing users to
apply a wide range of machine learning models to their data.

However, debugging these generative models can be challenging
for users who have to scan through individual training points that
are mislabeled or not well-de�ned by their heuristics. To address
this issue, we introduced Socratic learning [14], which automat-
ically identi�es information that could be used to improve the
generative model and updates the model accordingly. We observed
domain experts in the biomedical area who worked with Socratic
learning and noticed that if users could interpret why the gener-
ative model was failing, they could make manual adjustments to
the model that would improve its accuracy beyond the automated
correction.

We present our vision for Flipper, a framework that focuses on
improving noisy training data by presenting a human in the loop
with information about subsets of the training data that are inaccu-
rate. Flipper uses information that Socratic learning identi�es and
packages it using textual and visual explanations, which are easily
understood by users. It draws upon existing work that generates
explanations for machine learning model predictions [11, 19] and
utilizes them to instead explain discrepancies in the training set.
We describe some such methods in this paper and report a user
study where the discriminative model performance improves by
2.4 points over Socratic learning with Flipper.

Our main contribution in this paper is Flipper, a framework for
users to receive the information about how the generative model
is lacking in a comprehensible form and help them systematically
eliminate de�ciencies in the training set creation process. Users can
therefore debug their training set labels e�ciently while avoiding
the guessing-and-checking involved in inspecting individual data
points to adjust their heuristics. In the next sections, we brie�y
describe data programming, which uses a generative model to label
data noisily, and Socratic learning, which automatically improves
generative models (Section 2). We then describe the Flipper work-
�ow and describe how Flipper can work with textual and image
data and with methods like crowdsourcing (Section 3). Finally, we
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demonstrate speci�cs of the Flipper prototype with a user study
in Section 4.

2 BACKGROUND: DATA PROGRAMMING
AND SOCRATIC LEARNING

We explain data programming, a speci�c technique that uses a gen-
erative model to create a noisy training set that a discriminative
model can then train on. �e data programming paradigm com-
bines multiple sources of weak supervision by allowing users to
programmatically encode these heuristics as labeling functions, as
shown in Figure 1(a) and (d). �ese labeling functions are then
used to assign multiple labels to the same set of data, and data
programming uses the disagreements among these labels to learn
an accuracy parameter for each of the labeling functions. Using
a weighted average, each data point in the training set receives a
probabilistic label. �is noisy training set can then be used to train
any noise-aware discriminative model – a model that accepts and
optimizes over a set of probabilistic instead of binary labels. �is
process of writing and re�ning labeling functions iteratively and
training a machine learning model is encapsulated in Snorkel [3],
an interactive environment for users to utilize data programming.

We observed that some labeling functions users wrote were im-
plicitly designed for a subset of the dataset, but these subsets were
di�cult for users to recognize merely via inspection. We proposed
Socratic learning to address the above issue, a paradigm that au-
tomatically identi�es subsets in the data that some heuristics are
specialized for and incorporates this information in the generative
process. In order to recognize these subsets, Socratic learning re-
lies on the disagreement between the training set labels and the
predicted labels from the trained discriminative model, and �nds
speci�c features of the data most correlated with this disagreement.
With access to these features, the updated generative model out-
puts a more accurate training set, which in turn leads to a be�er
discriminative model.

However, in our experience working with domain experts using
data programming and Socratic learning for real-world experiments,
we noticed that users could manually re�ne their labeling functions
based on the features Socratic learning recognized. We propose
Flipper, a framework that allows users to be�er understand why
their generative process to create a training set has errors and
provides users information about how to debug their training sets
systematically.

3 FLIPPER FRAMEWORK
�e vision for Flipper is inspired by the study of Explainable
AI models [1], where performance and interpretability are not
competing forces. Flipper allows users to understand the features
that Socratic learning uses to automatically debug the training set
generation process. Since the feedback process is transparent for
the users, they have control over how additional corrections can
be made to the training set, leading to improvements above what
Socratic learning can provide. Users are given the opportunity to
identify why their training set is being composed poorly as well as
re�ne their heuristics to address the issues.

3.1 Machine Learning Pipeline with Flipper
We outline the steps a user goes through while developing a ma-
chine learning task and show where Flipper �ts into the pipeline.

(a) Initial Labeling and Training: Users obtain or create
noisily labeled data, whether via labeling functions in the
Snorkel framework, by collecting crowdsourced labels, or
by aggregating labels from a variety of sources. �is im-
perfectly labeled data is then used to train and evaluate a
machine learning model, as shown in Figure 1(a).

(b) Automated Debugging: Next, Socratic learning is used
to automatically improve the generative process. �is im-
provement is based on speci�c features, as shown in Fig-
ure 1(b), extracted from the trained discriminative model.

(c) Flipper: �e automated improvement is usually not enough
to correct all the errors in the training set. Flipper pro-
vides users with various tools that allow them to recognize
a common theme that explains the errors in their training
set labels. �ese tools and their possible uses are detailed
in later in this section.

(d) Re�ning Labeling Process and Retraining: With in-
formation from the previous steps, users have the option
to re�ne their labeling process, as shown in Figure 1(d).
�is step can be manual or partially automated. A�er the
generative model is re�ned, a new training set is generated
that the discriminative model can retrain on.

3.2 Flipper Tools
We outline possible methods that users can run using Flipper
that allow them to further understand the errors in the training
set. �e �rst three methods describe how Flipper could help �nd
an interpretable explanation for users to understand where their
training data has errors. �e last two provide a vision for how
the training set generation process can be partially automated or
made more e�cient by utilizing the information from the previous
methods.

Low-Dimensional Data Representation. As described in Section 2,
Socratic learning uses features of the data to automatically correct
the generative model. While these features usually represent some
aspect of the data, we have observed that users can manually re�ne
the generative model signi�cantly if they understand what these
features represent. In the case of text data, users can use techniques
like latent semantic analysis (LSA) [9] to recognize a set of words or
topics closely related to the one the feature from Socratic learning
represents. Given the word or phrase that Socratic learning identi-
�es, LSA provides users a list of similar words or phrases, which can
be manually analyzed in order to recognize what common theme
the feature is representative of.

A speci�c example comes from an experiment we conducted with
Socratic learning, where a group of biomedical experts wrote label-
ing functions in the Snorkel environment to identify mentions of
diseases in PubMed abstracts [16]. A�er Socratic learning identi�ed
a feature related to the phrase “induction of”, users ran LSA on the
phrase and saw that the most relevant phrase was “induction [of]
anesthesia” – a common phrase that appears in PubMed abstracts.
Domain experts pointed out that the phrase “induction of” usually
appears with non-disease names, such as “anesthesia” and “labor”
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(a)	Initial	Labeling	and	Training (b)	Automated	Debugging
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Create	New	
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(d)	Refining	Labeling	Process	and	
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...two cops team up to get back a 
kidnapped daughter...

...love with the woman who received
his wife's heart ...

... expose the truth and get back to 
the U.S., they must risk their lives...

Words Class

Figure 1: �e machine learning pipeline with Flipper, further described in Section 3.1. �e task, as described in Section 4,
is to categorize movie plots as belonging to the Action or Romance genre. (a),(b) relate to the initial labeling, training and
automated debugging processes. (c) shows how Flipper can help users identify key words they missed while writing the
labeling functions in (a). (d) shows the new labeling functions that users wrote using the information from Flipper.

and is therefore a good predictor of whether the word that follows
the phrase is indeed a disease or not. Adding another heuristic that
marked the word that appeared a�er said phrase as a non-disease
led to a 1.15 F1 point improvement over what automated Socratic
learning had provided. Note that this improvement is measured
on the �nal discriminative model, the downstream model whose
accuracy increases as a direct result of a be�er generative model
and training set.

Visual Explanations for Image Data. While features for textual
data are interpretable and can be analyzed through techniques
like LSA, image features are more di�cult to interpret and �nd
common themes for. In this case, Flipper could draw on two
existing techniques for explaining model prediction and instead
use it to explain errors in the training set.

�e �rst tool Flipper can work with is Lime [11], which gener-
ates locally faithful explanations for model predictions. Extending
this approach, we can use Lime in order to explain why the discrim-
inative and generative models disagree – that is, why the training
set labels and the predictions do not match. Since Lime allows users
to visualize which speci�c patches in an image correspond to the
predictions, it can help users understand what parts of the image
are being missrepresented in their training set.

Image classi�cation tasks are usually conducted using CNNs,
where the features are automatically generated by the neural net-
work. Recent work [19] allows users to visualize what the features
in each layer of the neural network represent. �ese can range from
speci�c colors, textures, and pose variations within the images.
Flipper can determine which features (or layer of features) best
explains the discrepancies between the training set labels and the la-
bels assigned by the trained CNN. Drawing upon these techniques,
Flipper can provide users a visual map of what characteristics in
the images cause mislabeled images in the training set.

Textual Explanations for Image Data. Captioning images auto-
matically [6, 15, 18] is a popular challenge in machine learning,

which Flipper can draw upon to generate short explanations for
why the training set is inaccurate. If Socratic learning identi�es
a feature that relates to errors in the generative process, these
features can be used to cluster image data. Moreover, automated
captioning techniques can be used to generate noisy captions for
di�erent clusters of images. Flipper can use simple techniques
like listing the most common words in the captions for each cluster,
which can allow users to determine what common theme or object
explains errors in their training set.

We used a similar technique in a binary image classi�cation
task conducted with Socratic learning, where we wrote labeling
functions to identify images as containing “Humans” vs. “Objects”.
Roughly analyzing the captions for the mislabeled images, we found
that the training set was mislabeling images with groups of people.
�is resulted from labeling functions that only marked captions
with words like “man”, “woman” and “person” as Human, without
accounting for the plural versions of these words. Adding in a
labeling function that accounted for this led to a 1.28 point increase
in accuracy for AlexNet [7], the discriminative model being trained.

Automated Labeling Function Generation. Currently, users re-
ceive feedback in the form of phrases or keywords related to a
topic that explains why the training set is inaccurate. However,
the burden still remains on the user to further interpret and decide
how to include this information in the form of re�ned or additional
labeling functions. �is process could also be automated to a certain
extent such that Flipper not only provides keywords to the users,
but also simple labeling function suggestions that mimic if-then
rules for re-labeling existing training data. Once the users view this
labeling function, they would have the option to re�ne it further or
add it to the existing set of labeling functions. Ideally, such feedback
could be provided in near real-time, making the debugging and
labeling process more e�cient.

Enhancing Crowdsourced Labeling Process. Flipper can also be
used to generate questions for crowdsourcing workers rather than
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Figure 2: An example of what Flipper could do in the crowd-
sourcing setting. (a) shows the initial, small subset of data
labeled via crowdsourcing. (b) shows the common theme
Flipper recognizes related to where crowd labels were more
accurate than average. (c) shows a generated set of questions
related to the theme from (b) that workers can answer to au-
tomatically label certain tweets.

having them hand-label multiple data points. �e motivation is that
answering questions takes less time than hand labeling examples
and since data programming can account for noisy labels, this saves
a signi�cant amount of time for the labelers without sacri�cing
quality of training set data. An example of such a se�ing is shown
in Figure 2. We used a crowdsourced sentiment analysis task where
the task was to classify tweets related to airplanes (Figure 2(a)). So-
cratic learning identi�es phrases related to complaints (Figure 2(b))
and we gather that tweets related to complaints are easier for la-
belers to accurately classify compared to other tweets. Given such
information, we propose that Flipper can reduce the amount of
data that has to be hand-labeled and replace it with questions about
speci�c phrases, as shown in Figure 2(c). Answering these ques-
tions allows a large amount of data to be labeled e�ciently, and in
most cases, fairly accurately.

4 USER STUDYWITH FLIPPER
To see how Flipper would help in a real experimental se�ing, we
describe a simple labeling exercise a group of graduate students
completed using Flipper and Snorkel. �e task at hand is to write
rules that determine whether a speci�c movie belongs to the “Ac-
tion” or “Romance” genres using the content of the movie’s plot.
�e data is extracted from the Internet Movie Databse (IMDb) and
pre-processed to remove any examples that did not belong to either
category, or belonged to both. We split this dataset further into
train, test and development sets of with 1136, 500, and 284 samples,
respectively.

4.1 Initial Labeling and Training
�e initial set of labeling functions were not di�cult for users to
write and took less than an hour. �e users were only required to
ensure that their labeling functions were be�er than chance, that
is, they had accuracies of more than 50%. Even though we had the

ground truth for all data in this particular case, we allowed users
to test their labeling function accuracies on the development set.

Example 4.1. A group of three graduate students wrote a set of
�ve labeling functions in the Snorkel framework that checked for
certain words in the plot to decide whether the movie belonged to the
“Action” or “Romance” genre. Examples of these labeling functions are
shown in Figure 1(a). If words like “chase”, “criminal” and“a�ack” are
present in a plot summary, they are marked as an “Action” movie and
if words like “heart warming” and “love” are in the plot summary, they
are marked as “Romance”. �ese labeling functions had accuracies
ranging from 66.67% to 93.33% on the data points they did assign
labels to. Only 17.6% of the training data had at least one label from
one of these labeling functions.

�e data programming algorithm was used to generate a noisy
training set where each data point was assigned a probabilistic label,
which was used to train a noise-aware logistic regression model.
�e features for the logistic regression model were generated using
a bag-of-words representation for the plot summaries, where each
binary feature signi�ed the presence or absence of a certain word or
phrase in the plot. Note that both the labeling functions and features
map to the words and phrases in the plot summaries. However, this
is not always the case and the labeling function and features can
work over di�erent domains. �e trained model had an accuracy
of 68.8% when evaluated on a held-out test set that the users or the
models never had access to.

4.2 Automated Debugging
Socratic learning relies on features to transfer knowledge from the
trained model to the training set creation process. In some cases,
the features provided to the machine learning model have a direct
correspondence to some aspect of the data being analyzed which
makes this feedback interpretable.

Example 4.2. �e features that Socratic learning identi�es in this
case represent the phrases “get back” and “receives” (Figure 1(b)).
Socratic learning improves the accuracy of the training set, which in
turn improves the accuracy of the retrained model to 69.6%. Since
such generic phrases provide users li�le intuition about why their
labeling functions were inaccurate, users are unable to manually edit
their labeling functions at this stage.

�is user study encapsulates why only having features that map
to some aspect of the data might not be enough to make the Socratic
learning process truly interpretable. Users are unable to determine
what kinds of movies their labeling functions were failing on given
these phrases. �erefore, Flipper is key to understanding why
the training set is inaccurate and how these inaccuracies can be
corrected systematically.

4.3 Flipper
A highlight of the Flipper framework is that it provides users
the opportunity to address the shortcomings in their training set
by providing tools to analyze the features that Socratic learning
identi�ed. For the user study, we used LSA to �nd meaningful
relations among the identi�ed phrases from step (b) and other
words present in the database of movie plots being classi�ed.



Flipper: A Systematic Approach to Debugging Training Sets HILDA’17, May 14, 2017, Chicago, IL, USA

Example 4.3. With LSA, users discover the words “drugs”, “thieves”,
and “possession” are among the top words associated with the phrase
“get back”, while “weekend”, “enamored”, and “journey” are associated
with “receive”. Since the two categories are “Action” and “Romance”,
it is easy for users to conclude that the �rst set of words correspond to
action movies and the second to romantic movies.

It is important to highlight that the users had to parse through
the list of words LSA provided in order to recognize these pa�erns.
Users agreed that adding these words to their labeling functions
would make their generative process more expressive and cover
more data points in the training set. Even though it would be easy
to add words users thought were associated with the two genres,
going through this exercise provides more direction in terms of
what speci�c words to include.

4.4 Re�ning Labeling Process and Retraining
With knowledge of the shortcomings in the labeling functions, the
users decide to either re�ne existing or write new labeling functions.
Since each labeling function encodes some useful information, users
usually do not remove existing labeling functions.

Example 4.4. Users decide to add two labeling functions shown
in Figure 1(d). One marks plot summaries with the words “drugs”,
“thieves”, or “possession” as “Action”. �e other marks plot summaries
with the words ‘weekend”, “enamored”, or “journey” as “Romantic”.
�e �rst labeling function has an accuracy of 73.5% while the second
has an accuracy of 90% on the data points they each label. With these
additional labeling functions, the coverage increases to 24.5% of the
training set.

Users regenerate the training set with a�er adding these new
labeling functions within Snorkel and retrain the same model. �e
training set accuracy increases by 6.8% and the test set accuracy
increases by 2.4%, compared to the training set and model in step
(b). �e �nal accuracy of the discriminative model was 72% when
evaluated on the test set.

5 CONCLUSION
In this paper, we described Flipper, a system that provides users
interpretable, high-level feedback about debugging their training
set. With the growing need for large, labeled training data sets,
it has become critical to �nd alternative ways of hand-labeling
data. In such a se�ing, we surmise that creating training sets pro-
grammatically and debugging them in a systematic manner are key
components in the overall data analysis pipeline. We continue en-
hancing Flipper via avenues mentioned in this paper while testing
its performance on various real-world tasks.
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