
Exploring the Utility of Developer Exhaust
Jian Zhang, Max Lam, Stephanie Wang, Paroma Varma,

Luigi Nardi, Kunle Olukotun, Christopher Ré

Stanford University

{zjian,maxlam,steph17,paroma,lnardi,kunle}@stanford.edu,chrismre@cs.stanford.edu

ABSTRACT
Using machine learning to analyze data often results in developer
exhaust – code, logs, or metadata that do not dene the learning

algorithm but are byproducts of the data analytics pipeline. We

study how the rich information present in developer exhaust can be

used to approximately solve otherwise complex tasks. Specically,

we focus on using log data associated with training deep learning

models to perform model search by predicting performance metrics

for untrainedmodels. Instead of designing a dierent model for each

performance metric, we present two preliminary methods that rely

only on information present in logs to predict these characteristics

for dierent architectures. We introduce (i) a nearest neighbor

approachwith a hand-crafted edit distancemetric to comparemodel

architectures and (ii) a more generalizable, end-to-end approach

that trains an LSTM using model architectures and associated logs

to predict performancemetrics of interest.We performmodel search

optimizing for best validation accuracy, degree of overtting, and

best validation accuracy given a constraint on training time. Our

approaches can predict validation accuracy within 1.37% error on

average, while the baseline achieves 4.13% by using the performance

of a trainedmodel with the closest number of layers.When choosing

the best performing model given constraints on training time, our

approaches select the top-3 models that overlap with the true top-

3 models 82% of the time, while the baseline only achieves this

54% of the time. Our preliminary experiments hold promise for

how developer exhaust can help learnmodels that can approximate

various complex tasks eciently.

ACM Reference Format:
Jian Zhang, Max Lam, Stephanie Wang, Paroma Varma, Luigi Nardi, Kunle

Olukotun, Christopher Ré. 2018. Exploring the Utility of Developer Exhaust.

In DEEM’18: International Workshop on Data Management for End-to-End
Machine Learning, June 15, 2018, Houston, TX, USA.

1 INTRODUCTION
The recent popularity of data analytics applications has led to a

proliferation of tools that can analyze large amounts of data. While

these frameworks and libraries are computationally ecient, they

have also made procedures like preprocessing data [16, 23], labeling

data [20], and analyzing model behavior [1] more systematic. For

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for prot or commercial advantage and that copies bear this notice and the full citation

on the rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specic permission

and/or a fee. Request permissions from permissions@acm.org.

DEEM’18, June 15, 2018, Houston, TX, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5828-6/18/06. . . $15.00

https://doi.org/10.1145/3209889.3209895

Trained Architecture 1

1. Train Model using Network
Architecture and Log Records

Trained Architecture N

2. Predict Performance of
Untrained Architecture

Untrained Architecture

Epochs

Ac
cu

ra
cy

 (%
)

Epochs

A
cc

ur
ac

y
(%

)

Epochs

A
cc

ur
ac

y
(%

)

Prediction
Model

Prediction
Model

Figure 1: Our method predicts the validation performance
of untrained architectures by utilizing information present
in logs of pre-trained architectures.

example, Numpy [23] and Pandas [16] help data scientists explore

their data, Snorkel [20] and Fonduer [24] allow users to write pro-

grammatic labeling functions to eciently label large amounts of

training data, and TensorBoard in Tensorow [1] lets users visually

inspect how well their deep learning models are performing. Since

such capabilities are not directly associated with improving the

nal prediction from these models, they can be viewed as devel-
oper exhaust – metadata or code associated with the data analysis

pipeline that are not part of a learning algorithm but byproducts of

developers building models to analyze their data.

Developer exhausts, such as log data generated while training a

model or programmatic functions to preprocess data, are usually

semi-structured. Therefore, it is possible to systematically study

such forms of exhaust to aid and simplify otherwise complex tasks.

For example, our previous work on labeling training data statically

analyzed programmatic labeling functions and used the information

present in the code users wrote to signicantly reduce the sample

complexity of a subsequent learning model [22]. In this paper, we

focus on the logs generated by deep learning models during the

training process. In the simplest case, these logs consist of training

and validation accuracy recorded every n training epochs, which

visualization platforms like TensorBoard use to provide insight into

how a model is performing. We explore how information present

in logs helps us build generalizable models that can approximate

complex tasks like model search and go beyond optimizing for

validation accuracy without additional user eort.

Model search, or selecting the correct model architecture, has

traditionally been used to select the best performing model for

tasks like image recognition and natural language processing [2,

3, 6, 15, 21, 25]. These methods train candidate architectures to

convergence to nd the best model, therefore taking up to several

hundreds of hours to nd the best model architecture [21, 25]. We

explore how we can predict the performance of dierent model

https://doi.org/10.1145/3209889.3209895

DEEM’18, June 15, 2018, Houston, TX, USA
Jian Zhang, Max Lam, Stephanie Wang, Paroma Varma,

Luigi Nardi, Kunle Olukotun, Christopher Ré

architectures by using the information in logs of previously trained

models. As a preliminary study, we present two methods to pre-

dict validation performance of various model architectures in the

context of convolutional neural networks; moreover, we show how

these methods can be easily adapted to predict other characteristics,

like performance given training time constraints and optimizing

for models that overt the least.

Our rst approach to utilize log data is inspired by methods like

Paleo [19], which can model the computational performance of

neural network model architectures. However, instead of modeling

each layer individually, we rely on an edit distance-based, model-

space-specic featurization to measure the similarity of model ar-

chitectures and select nearest neighbors of a model. Our second

approach aims at an end-to-end system performance prediction

system that does not rely on manual featurization. Inspired by the

recent trend in model performance prediction [5, 12], we design a

model similar to Peephole [4] and ENAS [18], training a long short

term memory (LSTM) model [9] to predict model performance.

However, instead of training dierent model architectures on the

y, we simply input logs and architectures of pre-trained models to

the LSTM to approximate the performance of untrained models.

Besides predicting the validation accuracy, we also demonstrate

how other information in developer exhaust can be easily incor-

porated to go beyond traditional model search for predicting best

performance. As a rst step, we show how without training or build-
ing new models, we can adjust our LSTM to predict overtting. We

extend our approach to predict which models perform the best

under training time constraints. We hope this modeling approach

can generalize to predicting other computational costs like memory

and network usage by utilizing system logs and learning model

behavior instead of modeling it explicitly.

Our preliminary results show the nearest neighbor and LSTM

approaches can approximate the best validation accuracy achieved

by an untrained model with 1.37% and 1.54% error in accuracy,

respectively; the baseline, which approximates the performance

of an untrained model with a trained model with the closest num-

ber of layers, achieves an average error of 4.13%. We also apply

our approach to select top performing models under training time

constraints; in 82% of the cases, the top-3 models predicted with

our nearest neighbor approach overlap with the true top-3 models,

while the baseline can only achieve this 54% of the time.

While our exploration of using developer exhaust for predict-

ing model performance is preliminary, it holds promise to how

the seemingly simple information present in logs can aid other

complex tasks. Going beyond training and validation accuracy, we

could also use system logs to predict other characteristics about

neural architectures. Utilizing developer exhaust can also help train

comprehensive models that can learn to predict the performance

and computational costs of dierent programs, which do not have

to be restricted to neural networks.

2 METHODOLOGY
In our preliminary exploration, we focus on a constrained model

space (Section 2.1) and explore how the information present in

developer exhaust can help predict a wide variety of characteristics

for deep learning models. First, we introduce a similarity metric

Layer 3: 3x3 conv, 128 filters, stride 1

Layer 2: 3x3 conv, 64 filters, stride 2

Layer 1: 3x3 conv, 32	filters, stride 1

Layer 3: 3x3 conv, 128 filters, stride 1

Layer 2: 5x5 conv, 64 filters, stride 1

Layer 1: 3x3 conv, 64	filters, stride 1

Image Image

Average pooling

Fully connected

Average pooling

Fully connected

Replace layer 2 with layer 3

Replace layer 1 with layer 1

Insert layer 1 before layer 2

Delete layer3

Figure 2: Transformation from one model to another model
in our model space. ThemodelMs (left) can be transformed
tomodelMt (right) using 2 replacement, 1 deletion and 1 in-
sertion operations. The total penalty of this transformation
is the sum of penalties induced by the 4 operations.

to compare model architectures and use the nearest-neighbor ap-

proach to predict untrained model performance (Section 2.2). To

move past hand-crafted metrics, we design a simple LSTM-based

end-to-end model that uses model architecture hyperparameters

and logs as input (Section 2.3).

2.1 Model Space
We focus on a class of models similar to residual networks (ResNets)

[7] that are widely used for image classication; we assume that

both the models associated with the developer exhausts, and the

models we predict performance for are within this model class.

These models consist of linearly-connected convolutional layers,

each of which is followed by a batch normalization layer [10] and

a ReLu layer [17]. Skip connections exist among the convolutional

layers and an average pooling and a fully connected layer are placed

after the convolutional layers to generate predictions.

Each convolution layer in a model is parameterized by hypa-

rameters like the number of lters, the stride of convolution op-

erations, and the existence of skip connections whose output is

combined with the output of the layer. Formally, the ith convolu-

tion layer, f (Wi ,θi) : Rm 7→ Rn , is a function mapping from the

m dimensional input vector to n dimensional output vector
1
.Wi

is the trainable parameter of the ith layer while θi species the
hyperparameter of this layer. Therefore, a model with c convolution
layers in our model space is fully specied by θ1, ...,θc .

2.2 Nearest Neighbor Approach
Intuitively, we expect similar model architectures to demonstrate

similar performance. Motivated by the edit distance used for string

comparison [14], we introduce an edit distance metric to measure

similarity among model architectures; this metric is the basis of

our nearest neighbor approach. The edit distance is the minimum

penalty induced by deletion, insertion and replacement operations

required to transform the original model to the target model. Since

the models in our model space dier only in terms of their con-

volution layers (we do not take into account the skip connections

explicitly in our preliminary investigation), the following transfor-

mation operations are sucient to convert an existing modelMs
to a new modelMt :

1
The input and output are tensors, we vectorize it for simplicity.

Exploring the Utility of Developer Exhaust DEEM’18, June 15, 2018, Houston, TX, USA

• Replacement: We replace a convolution layer f (W s
i ,θ

s
i)

from modelMs with a convolution layer f (W t
j ,θ

t
j) from

modelMt . The hyperparameters dening these two layers,

θsi and θ tj , can be the same or dierent.

• Insertion: We insert a convolution layer f (W t
j ,θ

t
j) from

modelMt into modelMs .

• Deletion: We delete a convolution layer f (W s
i ,θ

s
i) from

modelMs .

We associate a penalty with each of the transformation opera-

tions to nd theminimum total penalty, i.e. the edit distance between
Ms andMt . Algorithm 1 describes the procedure to compute the

edit distance betweenMs andMt . We assume that modelsMs
andMt have p and q convolution layers, respectively. The function

EditDistance(i, j) returns the edit distance between ith -pth con-

volution layers inMs and jth -qth convolution layers inMt . For

example, transforming the 3-layerMs intoMt shown in Figure 2

requires the following operations: (1) Replace layer 1 inMs with

layer 1 inMt ; (2) insert layer 2 fromMt before layer 2 inMs ; (3)

delete layer 3 inMs ; (4) replace layer 3 inMs with layer 3 inMt .

This operation sequence induces minimal total penalty, i.e. the

edit distance between the two models. This edit distance can be

expanded recursively as

EditDistance(1, 1) = Penalty
replace

(1, 1) + EditDistance(2, 2)

where the rst term is from replacement operation (1) and the

second is the edit distance between the second to third convolution

layers inMs and the second to third convolution layers inMt .

We utilize this recursive structure and implement the edit distance

calculation eciently using dynamic programming. Note that in

Algorithm 1, the penalty functions Penalty
replace

, Penaltyinsert

and Penalty
delete

depend onθsi andθ tj , the hyperparameters of the

layers i and j inMs andMt , respectively. For dierent layer pairs,

they may result in dierent penalties as discussed in Appendix B.

Algorithm 1 Edit distance between Model Architectures

1: Input: p , q (the number of conv layers inMs andMt)

2: function EditDistance(i, j)

3: if i > p and j > q then
4: return 0

5: else if i > p then
6: return EditDistance(i, j + 1) + Penaltyinsert (i, j)
7: else if j > q then
8: return EditDistance(i + 1, j) + Penalty

delete
(i, j)

9: end if
10: D

replace
= EditDistance(i + 1, j + 1) + Penalty

replace
(i, j)

11: Dinsert = EditDistance(i, j + 1) + Penaltyinsert (i, j)
12: D

delete
= EditDistance(i + 1, j) + Penalty

delete
(i, j)

13: return min

(
D
replace

, Dinsert, Ddelete

)
14: end function

Given an untrained model architecture in our model space, we

search for the K-nearest neighbor models in the existing logs with

respect to the edit distance. We perform a weighted average of the

validation accuracy curves of the K-nearest neighbor models to

predict the validation accuracy curve of the untrained model. To

encode our intuition that more similar architectures have more

similar performance, we use the inverse of edit distance as the

weights. We evaluate the nearest neighbor approaches in Section 3.

2.3 LSTM-Based End-to-End Approach
To study how developer exhaust can be utilized without the need for

handcrafted penalty functions, we present a more general method

that can take as input the log data and the model architecture and

output the validation metric at the required training epoch. In deep

learning, model architectures can be described as computational

graphs, and these can be serialized into sequential representations,

e.g. using topological ordering of the nodes in the graphs. As a

popular modeling tool for sequential representations, LSTM net-

works are a natural t for encoding the model architectures without

architecture featurization.

In our end-to-end approach, we design a LSTM-based regressor

to predict performance characteristics of an untrained model. We

rst use a distributional embedding to encode each node in the

serialized computational graphs. This sequence of node embedding

representations are piped into a single-layer LSTM. We extract the

last output of the LSTM and pass it through a three-layer multiple

layer perceptron (MLP) [8]. We use the scalar output of the MLP to

perform least square regression of the target values. More speci-

cally, our LSTM-based model uses a 40 dimensional embedding and

a 100 dimensional single-layer LSTM to encode the model architec-

ture. The MLP component uses 3 fully connected layers with 100,

10, and 1 dimensional output respectively. Each of these fully con-

nected layers is followed by ReLu activation to enhance the model

with non-linearity. For the model space we described in Section 2.1,

convolutional layers with dierent attribute values are encoded

using dierent embedding vectors. In this case, the convolutional

layers are linearly connected. Thus, we can feed the representation

of the architecture, the sequence of embedding vectors, directly

into the LSTM without computation graph serialization.

3 EVALUATION
To evaluate methods in predicting performance of untrained models

with existing log information, we rst compare our nearest neigh-

bor and LSTM-based approach to two baselines in predicting the

best validation accuracy of untrained models. The rst baseline pre-

dicts the performance of the untrained model using the validation

accuracy curve of a randomly selected model from our model space,

while the second baseline predicts with the validation accuracy

curve using a randomly selected model with the closest number of

convolutional layers. By simply changing the input information to

our two approaches, we can also predict the degree of overtting,

or the discrepancy of best training and test accuracy. Finally, going

beyond accuracy information in the logs, we also utilize the training

time of dierent model architectures from logs to select the models

that perform the best under training time constraints.

3.1 Experimental Setup
Model Space. Based on the model space described in Section 2.1,

we generate models with 8 to 18 convolution layers with the fol-

lowing properties:

• Number of lters from {24, 36, 48, 64};

• Filter kernel sizewithwidth and height sampled from {3, 5, 7};

DEEM’18, June 15, 2018, Houston, TX, USA
Jian Zhang, Max Lam, Stephanie Wang, Paroma Varma,

Luigi Nardi, Kunle Olukotun, Christopher Ré

Figure 3: Ground truth vs. predicted validation accuracy us-
ing nearest-neighbor approach.

• Stride for convolution operation from {1, 2} for layers at 1/3

and 2/3 of the convolution layer chain (rest set to stride 1);

• Number of skip connections from {0, 1, 2, 3} to merge with

the output of each convolution layer, with the source layer

of the skip connection randomly selected.

Evaluation Protocol. We use the CIFAR10 image classication

dataset with 40K training and 10K validation samples for our eval-

uation [13]. We use the training logs associated with 122 randomly

selected models from our model space. These models were trained

for 60 epochs using standard SGD with momentum 0.9, initial learn-

ing rate 0.05, and the learning rate dropping by a factor of 10 after

20 and 40 epochs. To support hyperparameter tuning for our LSTM-

based approach, we split the models into training, validation and

test set with a ratio of 3 : 1 : 1. We use the training set as the ex-

isting repository of logs, while the validation set is for grid search

of dropout rate, L2 regularizer and learning rate of Adam opti-

mizer [11]. For the baselines and nearest neighbor approach, we

use the union of training and validation set as the existing reposi-

tory and predict over the test set. We refer to Appendix B for details

on penalty function design for the nearest neighbor approach. Note

the number of sampled models is substantially smaller than the size

of the model space, and we aim to generalize with limited training

samples in predicting the performance of untrained models.

3.2 Results
To quantitatively evaluate our nearest neighbor and LSTM ap-

proaches, we report the comparison to the baselines for predicting

performance charateristics. In our experiments, we bootstrap from

our small number of models, and collect metrics over 10 runs with

dierent model set splits. We report the average prediction error

with its standard deviation from across all runs in Table 1. We run

our nearest neighbor approach with 1, 3, 5 nearest neighbor trained

models. As shown in Table 1, our approach with 5 nearest neighbor

models performs the best, with a 1.37% average error in predicting

the best validation accuracy for a model. It outperforms the two

baselines by 3.54% and 2.76%, respectively. Figure 3 shows examples

of how the predicted validation accuracy of an untrained model

compares to the ground truth validation accuracy. We include a

detailed discussion in Appendix A.

Our end-to-end LSTM model achieves 1.54% average error in

predicting test accuracy without requiring any hand-crafted com-

parison metrics. By simply switching the input information, we

also evaluate our two methods on predicting the degree of overt-

ting, the discrepancy between best training and best test accuracy.

Our LSTM-based model achieves the lowest average error of 0.67%.

These experiments validate that by utilizing existing training logs,

our two proposed approaches provide eective ways to predict

performance characteristics of untrained models in the same model

space. The performance of the LSTM model shows how we could

build end-to-end systems to predict performance metrics without

hand-crafting a featurization specic to a certain model space.

Going beyond accuracy information in the logs, we also demon-

strate how recorded runtime can help predict the best test accuracy

of an untrained model under training time budgets. In this task,

we rst predict the average running time of each epoch using the

recorded runtime in the logs and estimate the number of epochs

under the budget. The nal prediction is achieved by retrieving

the best accuracy before that epoch from the predicted validation

accuracy curve. We then use the 3-nearest neighbor approach to

predict the average epoch time and validation accuracy curve. For

each model set split, we rank the test set models with predicted

best accuracy under the time budget. With 50 runs using dierent

model set splits, we report how often the predicted set of top-3

model overlaps with the ground truth top-3 models. With a budget

of 10k and 20k seconds, the predicted and true top-3 models overlap

in 74% and 82% of the runs, respectively; at the same time, the two

baselines only achieve 24%, 42% for the 10k budget and 40%, 54%

for the 20k budget. This demonstrates how information in logs can

help with model search with computational constraints.

Method Err. best test acc. Err. degree of overtting

Baseline 1 4.91% + 1.06% 0.93% + 0.18%

Baseline 2 4.13% + 1.25% 0.96% + 0.22%

1-Nearest Neighbor 1.78% + 0.33% 0.90% + 0.18%

3-Nearest Neighbor 1.39% + 0.30% 0.79% + 0.15%

5-Nearest Neighbor 1.37% + 0.27% 0.73% + 0.11%

LSTM 1.54% + 0.43% 0.67% + 0.07%

Table 1: The average absolute error for predicting the best
validation accuracy and degree of overtting of an un-
trained model. We report the average error and standard de-
viation over 10 runs.

4 CONCLUSION
We discuss two preliminary methods of using information present

in logs generated while training deep learning models to predict the

validation accuracy of untrainedmodels with dierent architectures.

The nearest-neighbor based approach allows users to see which

models were selected to predict performance while the LSTM-based

method should generalize better to dierent model architectures.

We are continuing to explore how we can modify the edit distance

metric to be robust to more signicant dierences in model ar-

chitecture, and the variations in the model the LSTM can handle.

Moreover, while we utilized logs that we generated ourselves for

the experiments, we want to explore how well it extends to logs

that other developers generate by looking at training logs from open

source models. Using developer exhaust like log data to aid a com-

plex problem like model search holds promise about the utility of

information in data analysis byproducts like metadata, and logs.

Exploring the Utility of Developer Exhaust DEEM’18, June 15, 2018, Houston, TX, USA

Acknowledgement. We gratefully acknowledge the support of DARPA

under No. FA87501720095, NIH under No. U54EB020405, ONR under No.

N000141712266, NSF under No. 1563078, the National Science Foundation

(NSF) Graduate Research Fellowship under No. DGE-114747, Joseph W. and

Hon Mai Goodman Stanford Graduate Fellowship, and members of the Stan-

ford DAWN project: Intel, Microsoft, Teradata, VMware, Google and NEC.

The U.S. Government is authorized to reproduce and distribute reprints for

Governmental purposes notwithstanding any copyright notation thereon.

Any opinions, ndings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily reect the

views, policies, or endorsements, either expressed or implied, of DARPA,

DOE, NIH, ONR, or the U.S. Government.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jerey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Georey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,

Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

(2015). https://www.tensorow.org/ Software available from tensorow.org.

[2] Tal Ben-Nun and Torsten Hoeer. 2018. Demystifying Parallel and Dis-

tributed Deep Learning: An In-Depth Concurrency Analysis. arXiv preprint
arXiv:1802.09941 (2018).

[3] Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. 2017. SMASH:

one-shot model architecture search through hypernetworks. arXiv preprint
arXiv:1708.05344 (2017).

[4] Boyang Deng, Junjie Yan, and Dahua Lin. 2017. Peephole: Predicting network

performance before training. arXiv preprint arXiv:1712.03351 (2017).
[5] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. 2015. Speeding Up

Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapo-

lation of Learning Curves.. In IJCAI, Vol. 15. 3460–8.
[6] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. 2017. Simple and ef-

cient architecture search for convolutional neural networks. arXiv preprint
arXiv:1711.04528 (2017).

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[8] Georey E Hinton. 1987. Learning translation invariant recognition in a mas-

sively parallel networks. In International Conference on Parallel Architectures and
Languages Europe. Springer, 1–13.

[9] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[10] Sergey Ioe and Christian Szegedy. 2015. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In International conference
on machine learning. 448–456.

[11] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[12] Aaron Klein, Stefan Falkner, Jost Tobias Springenberg, and Frank Hutter. 2016.

Learning curve prediction with Bayesian neural networks. (2016).

[13] Alex Krizhevsky, Vinod Nair, and Georey Hinton. 2014. The CIFAR-10 dataset.

online: http://www. cs. toronto. edu/kriz/cifar. html (2014).
[14] Vladimir I Levenshtein. 1966. Binary codes capable of correcting deletions,

insertions, and reversals. In Soviet physics doklady, Vol. 10. 707–710.
[15] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray

Kavukcuoglu. 2017. Hierarchical representations for ecient architecture search.

arXiv preprint arXiv:1711.00436 (2017).
[16] Wes McKinney et al. 2010. Data structures for statistical computing in python. In

Proceedings of the 9th Python in Science Conference, Vol. 445. Austin, TX, 51–56.
[17] Vinod Nair and Georey E Hinton. 2010. Rectied linear units improve re-

stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807–814.

[18] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and Je Dean. 2018.

Ecient Neural Architecture Search via Parameter Sharing. arXiv preprint
arXiv:1802.03268 (2018).

[19] Hang Qi, Evan R Sparks, and Ameet Talwalkar. 2016. Paleo: A performance

model for deep neural networks. (2016).

[20] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and

Christopher Ré. 2017. Snorkel: Rapid training data creationwithweak supervision.

arXiv preprint arXiv:1711.10160 (2017).
[21] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Sue-

matsu, Quoc Le, and Alex Kurakin. 2017. Large-scale evolution of image classiers.

arXiv preprint arXiv:1703.01041 (2017).
[22] Paroma Varma, Bryan D He, Payal Bajaj, Nishith Khandwala, Imon Banerjee,

Daniel Rubin, and Christopher Ré. 2017. Inferring Generative Model Structure

with Static Analysis. In Advances in Neural Information Processing Systems. 239–
249.

[23] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. 2011. The NumPy

array: a structure for ecient numerical computation. Computing in Science &
Engineering 13, 2 (2011), 22–30.

[24] Sen Wu, Luke Hsiao, Xiao Cheng, Braden Hancock, Theodoros Rekatsinas, Philip

Levis, and Christopher Ré. 2017. Fonduer: Knowledge Base Construction from

Richly Formatted Data. arXiv preprint arXiv:1703.05028 (2017).
[25] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement

learning. arXiv preprint arXiv:1611.01578 (2016).

https://www.tensorflow.org/

DEEM’18, June 15, 2018, Houston, TX, USA
Jian Zhang, Max Lam, Stephanie Wang, Paroma Varma,

Luigi Nardi, Kunle Olukotun, Christopher Ré

A VISUALIZATION OF PREDICTED TEST
ACCURACY

We rst show examples of how well the test performance of a

nearest neighbor model from existing logs can predict the perfor-

mance of an untrained model. As shown in Figure 4(a) and (b), the

edit distance metric described in Section 2.2 successfully selects

pre-trained models that have performance similar to the untrained

model. However, Figure 4(c) shows an example where the metric

fails – this is because the untrained model has stride 2 convolution

layers while the nearest neighbor trained model does not.

B PENALTY FUNCTIONS FOR EDIT
DISTANCE

In Table 2, we specify the value of the penalty functions used in

Algorithm 1. For the replacement operation, the discrepancy of each

hyperparameter of layer i in one model and layer j in the other

model contributes to the penalty. Motivated by the fact that models

with and without stride 2 convolution often have very dierent

validation performance (Figure 4(c)), we have a strong penalty for

replacement using a layer with dierent strides. This strong penalty

can avoid, in some cases, matching models with and without stride

2 layers as nearest neighbors. To have a balanced penalty across

dierent operations, if layer i and layer j have the same stride, the

penalty of insertion and deletion is 2.0, which matches the penalty

of replacement for layers with the same stride. Inspired by the

intuition that models with dierent number of layers typically have

very dierent validation performance, we enforce a strong deletion

and insertion penalty even when layer i and layer j have the same

stride parameter. For models without stride 2, this strong penalty

prevents two models with very dierent number of layers from

being nearest neighbors.

Penalty
replace

(i, j)
1(layer i and layer j have dierent # of lters)
+1(layer i and layer j have dierent kernel size)
+∞ · 1(layer i and layer j have dierent stride)

Penaltyinsert (i, j)
2.0 · 1(layer i and layer j have dierent stride)
+∞ · 1(layer i and layer j have the same strides)

Penalty
delete

(i, j)
2.0 · 1(layer i and layer j have dierent strides)
+∞ · 1(layer i and layer j have the same strides)

Table 2: The value of penalty functions as a function of the
hyperparameters of the convolutional layers.

Exploring the Utility of Developer Exhaust DEEM’18, June 15, 2018, Houston, TX, USA

0 10 20 30 40 50 60

Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy

Nearest neighbor

Ground truth

0 10 20 30 40 50 60

Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy

Nearest neighbor

Ground truth

0 10 20 30 40 50 60

Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
a
lid

a
ti

o
n
 a

cc
u
ra

cy

Nearest neighbor

Ground truth

Figure 4: Predicted validation accuracy curve and the ground truth performance of example models. Given a new model, the
prediction is the validation accuracy curve of the nearest existingmodel with respect to the edit distance. For the two example
models in (a) and (b), the nearest neighbor model demonstrates similar validation accuracy curve to the examples. In (c), the
nearest neighbor model demonstrates dierent validation accuracy curve to the given example model.

	Abstract
	1 Introduction
	2 Methodology
	2.1 Model Space
	2.2 Nearest Neighbor Approach
	2.3 LSTM-Based End-to-End Approach

	3 Evaluation
	3.1 Experimental Setup
	3.2 Results

	4 Conclusion
	References
	A Visualization of predicted test accuracy
	B Penalty functions for edit distance

